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Figure 1: Shape registration via distance field matching: top left, source image; bottom left, target image; middle, source registered onto
target, using the classic dissimilarity measure; right, source registered onto target, using the new dissimilarity measure. The target’s contour
is superimposed in magenta.

Abstract

One popular method to match two shapes is to register their dis-
tance fields as images. We discuss the well-known robustness prob-
lems of this approach and identify the noncommutativity of distance
transform and geometric transformations as a core issue. Building
on this, we propose a simple modification of the method, deriving
a new dissimilarity measure. As it involves multiple distance field
computations, we also present an efficient GPU-based algorithm for
this problem.
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1 Introduction

Shape registration (or shape matching) is one of the fundamen-
tal computer vision problems: given two figures, transform one of
them, source, into a figure as similar in shape to the other one, tar-
get, as possible. This task arises naturally in such fields as shape
reconstruction [Levoy 2000], shape tracking [Zhou 2005], shape
interpolation [Kilian 2007], semantic deformation transfer [Baran
2009], shape recognition [Fahmi 2008], shape retrieval [Belongie
2001], and statistical shape modeling [Zhu 1996]. Combined with
intensity-based methods, it has also been widely used for image
segmentation [Tsai 2003] and registration [Babalola 2006]. Some
of the most important applications of these methods are in medical
imaging and related areas [Maintz 1998, Zitova 2003], including
data alignment [Malcolm 2008], detection of tumors and nodules
[Ginneken 2001], and guidance in neurosurgery [St-Jean 1998].
Our particular interest lies in automatic or user-assisted mapping
of experimental brain images onto an atlas (Fig. 1).

More formally, the problem of shape registration can be reformu-
lated as follows. For a pair of admissible figures A,B ∈ Υ,
and a permissible set of transformations Ω, find a transformation
T opt ∈ Ω that, when applied to A, results in a shape that minimizes
a certain dissimilarity measure Fdis, regularized by a smoothness

measure Fsm, with respect to B:

T opt = argmin
T⊂Ω

(Fdis (T (A) , B) + λ · Fsm (T )) . (1)

We will use integral of the sum of squared second derivatives as a
smoothness measure, which is a popular, but by no means the only,
choise [Munim 2007, Paragios 2003].

Design and complexity of shape registration are largely defined by
the permissible set of transformations, or transformation model [Zi-
tova 2003]. It is usually determined by the data acquisition process
and shape variability among the objects being registered. Linear
tranformations include rigid motions, similarity transforms, affine
transforms and perspective projections; these are global mappings
defined by a small number of parameters (3, 4, 6, and 8, accord-
ingly, in the planar case). Non-linear transformations can be ex-
plicitly parameterized, usually by tens to hundreds variables, each
influencing a small region (examples include polynomial splines,
radial basis functions and partition-of-unity). Another option is to
derive the transformation from a physical model of the objects be-
ing registered, by defining external stretching forces, working to-
wards improving local similarity, and internal resisting forces, min-
imizing amount of bending and stretching — and iterating towards
the minimum energy state (popular examples of the models include
those based on elastic rubber sheet and viscous fluid).

Shape representation is another important factor. Point clouds,
spectral descriptors, parametrical curves, snake models, shock
graphs and skeletons have all been extensively used in shape match-
ing [Veltkamp 1999]. A more recent approach is to represent the
figure’s border implicitly as zero level-set of its distance field [Para-
gios 2003]. Distance field of a closed planar contour γ is a scalar
function defined for any point x as follows:

DF (x; γ) = σ (x; γ) · dist (x, γ) ; (2)

for x inside γ, σ (x; γ) = −1; otherwise, σ (x; γ) = 1.
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Figure 2: Distant fields are not robust to noise: left, source figure
and its noisy counterpart; right, first components of the gradients
of their distant fields.
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Figure 3: A localized change in shape (a, c) can have a far-
reaching effect on its distant field (b, d).

The main advantage of using distance fields for shape registration is
that by discretizing the field on a rectangular support we can recast
the problem as one of image registration, and draw upon the vast lit-
erature on the subject. Dissimilarity measure for such distance im-
ages1 is usually the sum-of-squared-distances (SSD), or, in case of
siginificant variation in shapes’ scale, mutual information [Huang
2006] (correlation ratio was also discussed, but not implemented,
in [Hong 2006]). Optimization methods for both linear and vari-
ous nonlinear transformations have been proposed [Paragios 2003,
Huang 2006, Liu 2011].

2 Analysis

Combining equations 1 and 2, we get the following expression for
the transformation matching contours A and B:

T opt = argmin
T⊂Ω

(Fdis (T (DF (A)) , DF (B)) + Fsm (T )) .

(3)

This approach presents certain problems. First of all, distance fields
are not robust to small noise-like perturbations [Hong 2006]. Figure
2 demonstrates this effect: given a simple figure (a), that defines
a distance field with smooth gradients (b), we add only a modest
amount of binary noise to the figure’s contour (c), which results
in significant degradation of the gradients (d). Effects of the noise

1We’ll use DF (γ) to refer to the distance image of γ. The image’s
dimensions are defined by the application.

Figure 4: Two similarly shaped figures show pronounced differ-
ences in the structure of their distance fields (shown: magnitudes
of gradients, contrast-enhanced).

are not local to the contour, effectively changing the distance field’s
structure.

What’s more, you don’t need to add distortions all over the con-
tour to affect its distance field [Liu 2011]. As figure 3 illustrates,
a small localized tranformation of a contour can change values and
smoothness of a sizable part of its distance field.

A more general fact, related the previous two, is as follows: two
figures can have similar shape, but differently structured distance
fields. In figure 4, this is demonstrated by comparing a pair of
brain slices. Taken from two different brains, but in anatomically
close positions, their shape is roughly equivalent. At the same time,
their distance fields have markedly distinct features. No geometri-
cal transformation can match these fields exactly. For shape regis-
tration, this can result in slower optimization and suboptimal fit.

Limitations of the approach can be summed up by a simple obser-
vation [Liu 2011]. For any transformation T acting upon contour
A in a non-rigid way:

T (DF (A)) �= DF (T (A)) . (4)

In other words, transformation of a shape’s distance field is no
more than an estimate of the distance field of the actual transformed
shape. As a consequence, dissimilarity measure in equation 3 only
approximates the actual dissimilarity, imposed by T .

At least three basic approaches have been employed by the research
community to improve the method’s robustness: limiting the calcu-
lation of the dissimilarity measure to narrow bands around the con-
tours [Paragios 2003]; changing the shape representation to a gen-
eralized version of distance fields (integral kernels [Hong 2006],
vector distance functions [Munim 2007]); changing the dissimi-
larity measure to a more robust one (mutual information [Huang
2006], variational chamfer-matching energy [Liu 2011]). Of these,
only the latter work addresses property 4, albeit somewhat indi-
rectly. Authors propose a symmetric variational measure, general-
izing the “narrow bands” idea (eliminating the need for a heuristic
to control the width of the bands). While their method does achieve
very promissing results, it uses complicated techniques for shape
representation and optimization, making it much more difficult to
implement than any other algorithm discussed here.
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Figure 5: Comparing dissimilarity measure used in equation 3
(warm colours) to that of equation 5 (colder palette).

3 Proposed method

Considering the importance of property 4, discussed above, we
would like to propose the following simple modification of pro-
cedure 3:

T opt = argmin
T⊂Ω

(Fdis (DF (T (A)) , DF (B)) + Fsm (T )) .

(5)

While both alternative shape representations and dissimilarity mea-
sures, discussed above, could be incorporated into this algorithm,
for space and clarity considerations, we shall only discuss the case
of distance fields and SSD. When calculating the smoothness mea-
sure, we found it useful not to integrate over the whole image, but
to exclude a narrow band around the contour. This usually results
in better fit and improves convergence.

Although one could match distant field images using any image
registration algorithm, most methods discussed above boost perfo-
mance rate by introducing some kind of efficient approximation of
the gradient of the dissimilarity measure, often allowing analytical
derivation. In our case, though, transformation is incorporated into
the measure in a highly non-linear and opaque fashion, which seems
to preclude this kind of approach. On the other hand, derivative-free
optimization methods remain either unreliable or difficult to tune
for expensive functions in higher dimensions. So, we have to fall
back to the use of finite differences to approximate the gradient.

Since every component of the gradient needs two evaluations of
the dissimilarity measure, we need a tranformation model that has
as little parameters as possible, while still being relatively flexible.
Ideally, each parameter should also influence only a small part of
the image, allowing to group them in batches for simultaneous pro-
cessing. Classical apparatus of cubic B-splines happens to be just
such a model [Huang 2006]. Actually, it has the following neat
property: gradient’s computational complexity is virtually indepen-
dent on the number of control points [Knott 2000]. Still, it takes
30+ function evaluations per 1 gradient evaluation. Considering the
cost of the gradient computation, as well as the significant dimen-
sionality of the search-space, we chose the limited-memory version
of the Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) as
the optimizer, since it’s particulary suited to this kind of problems
[Byrd 1995]. For both L-BFGS optimization and B-spline transfor-
mations, we used the efficient implementations published by Dirk-
Jan Kroon to accompany his PhD thesis [Kroon 2011].

Unlike in previous approaches, when calculating the distance field
for a contour on a grid, we can not assume that the contour’s points
all come from the grid. Nor can we just project the points onto the
grid before the calculation, as we need our measure to be sensitive

to small perturbations of the contour (it is crucial for the gradi-
ent approximation). Consequently, we can’t use the fast image-
based distance transform algorithms [Ciesielski 2011], and have
to calculate distance field of a polygon instead, which is a very
computationally-intensive procedure. In fact, we found that with
a straightforward implementation, it takes over 95% of the calcu-
lation time. We address this problem by introducing an efficient
GPU-based library for computing distance fields, based on NUDA
(see section 4). In this, we follow [Voronin 2009], but use more ad-
vanced and up-to-date programming libraries and techniques. Note
that we shall only discuss the magnitude of the distance field and
not the sign (σ in equation 2), since its computation proceeds in a
similar way and takes only a small fraction of the combined time.

To compare the two dissimilarity measures, classic Fold =
Fdis (T (DF (A), DF (B))) of equation 3 and proposed Fnew =
Fdis (DF (T (A)) , DF (B)) of equation 5, we conducted the fol-
lowing experiment. Using a sample mouse brain contour, 16x16
B-spline control point grid (512 variables), and 200x200 distance
field discretization, and registering the contour upon a transformed
version of itself, we studied the measures in vicinity of identity
transform when all but two variables (pertaining to a single con-
trol point), are fixed. For each control point Pi, we went through
32x32 regularly spaced pairs of values for variables v1i and v2i , and
calculated Fnew and Fold for each of them. Choosing from the
cases that exibited significant variation, in figure 5 we show typical
examples as surfaces (while these are all free of local extrema and
even convex, this can not be expected in general case). Notably,
Fnew > Fold and ‖∇Fnew‖ > ‖∇Fold‖ in all cases. That Fnew

shows steeper behaviour indicates that it is indeed a more sensitive
measure of dissimilarity, and is also important for the convergence
speed of the optimization procedure.

Using both measures, we’ve implemented a tool for brain slice
alignment. You can see an example of its work in figure 1. While
the difference between the results may not always be as pronounced
as in this case, in our experience, the new measure consistently out-
performs the old one and is more robust. With GPU-optimized dis-
tance field computations, coregistering 200x300 slices takes, de-
pending on how different they are, 2-10 seconds.

4 GPU implementation

Nemerle is an extensible language, that is, a language which al-
lows extending its syntax and semantics relatively easily. Nemerle
accomplishes this with the help of macros, special functions which
execute at compile-time as compiler plugins, perform code transfor-
mations and extend syntax of the language. Nemerle also provides
code quoting facilities for concise creation of code trees from tem-
plates, and concise analysis of code trees passed as macro param-
eters. Nemerle macros are actually quite rich: any .NET method,
either standard or user-written, can be called from inside a macro.
Also, many features considered "built-in" in other languages, such
as loops, conditionals, locks or asynchronous execution, are in fact
implemented as macros in Nemerle.

NUDA (= Nemerle Unified Device Architecture) [Adinetz 2012,
Adinetz 2011] is a set of Nemerle extensions for program-
ming graphics processors. Extensions provided include multi-
dimensional for-like loops, sending loops to execute on GPU, used-
defined on-GPU functions and a set of loop transformations. Sim-
ple and structural types, as well as arrays, are supported for use
in GPU kernels. libgpuvm enables using of ordinary .NET arrays
on GPU with little copying overhead through lazy synchronization
and moving data to host with userspace pagefault handling. Special
array types automatically synchronized between host and GPU are
also provided, though this is currently not a preferred way of using
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Algorithm 1 Array addition in NUDA (for better readability, re-
served words are in bold type, while the comments are italicized).
// allocate arrays
def a = array(n) : array[float];
def b = array(n) : array[float];
def c = array(n) : array[float];
// ... initialization ...
// array addition on GPU
nuwork(64) do(i in n)
c[i] = a[i] + b[i];
// some work with array c

Algorithm 2 Different versions of the distance field computation,
top to bottom: baseline; optimized for NVidia Fermi; optimized for
AMD (optimization-related annotations are undescored for better
redability).
nuwork(128) do(i in m) {
def p = ps[i];
mutable d2 = 1e38f;
do(j in n1)

d2 = min(d2, dist2(es[j], p));
df[i] = sqrt(d2);

} // baseline version

nuwork(128) dmine(4) do(i in m) {
def p = ps[i];
mutable d2 = 1e38f;
unroll(2) do(j in n1)
d2 = min(d2, dist2(es[j], p));

df[i] = sqrt(d2);
} // version optimized for NVidia Fermi GPUs

nuwork(128) dmine(10) do(i in m) {
def p = ps[i];
mutable d2 = 1e38f;
unroll(2) do(j in n1)

d2 = min(d2, dist2(es[j], p));
df[i] = sqrt(d2);

} // version optimized for AMD GPUs

data in GPU kernels.

NUDA makes GPU programming really straightforward, once the
program consists of parallel loops processing arrays. For example,
array addition, traditional GPU "hello world!", is really straightfor-
ward, see Algorithm 1. In fact, do(...) is a loop, which can be multi-
dimensional, and nuwork(64) is an annotation which sends the
loop to which it is applied to GPU; here, 64 is the thread block size,
and the total number of threads is derived from the number of iter-
ations on the GPU. The implementation of array addition on GPU
above is, in fact, near-optimal, as the problem is memory-bound,
and the implementation almost saturates memory bandwidth. For
other problems, however, such naïve implementations are far from
optimal. In these cases, annotations performing loop transforma-
tions can be applied to optimize the code. Annotations include
full loop unroll (inline), standard unroll (unroll), deep loop unroll
(dmine), caching data in local memory (ulocal), loop tiling as well
as other transformations.

Distance field computation is the problem of computing distances
from a set (an array) of points to the border of a polygon, one dis-
tance per point. In the basic case, for each point, the distance is
the minimum of distances from the polygon to each of the points
in the set. There are two main approaches to distance field com-
putation. The first one is all-to-all approach, in which for each
point, distance to each of the edges is computed, and minimum dis-

tance is found. The second approach is to use an HBV (hierarchy
of bounding volumes), e.g. BSP trees. While the second approach
is asymptotically better, it is not clear outright which one is faster,
since all-to-all approach allows more aggressive optimization and
is more cache friendly.

For our testing, we implemented both approaches on CPU and
GPU. CPU implementation was done using C++ with OpenMP and
SSE intrinsics, while GPU variant was implemented using Nemerle
and NUDA. For all-to-all approach, two versions are compared: the
trivial version and the optimized version. Here, optimization was
done using NUDA annotations without compromising readability,
see Algorithm 2. The basic GPU code version, together with anno-
tations used for optimization, is presented below. dmine(k) annota-
tion does deep loop unrolling. This means creating k copies of the
loop and zipping them together, including inner loop. It can also be
thought of as computing k elements in a single GPU thread at the
same time. For AMD, this allows benefiting from its 5-way VLIW
instructions, and it also results in less global memory bandwidth for
both architectures. unroll(k) does simple k-sized loop unrolling,
and reduces looping overhead for the inner loop on NVidia GPUs.

For the second approach, we implemented HBV-assisted distance
computation on GPU. We first construct a BSP tree using fixed-
point (at half size) recursive space subdivision, and switching sub-
division axis for subsequent subdivisions. We stop when either the
maximum depth or minimum number of edges is reached, or when
the overhead resulting from the subsequent subdivision is higher
than a certain threshold. After that, we transform the BSP into
HBV node-wise from the bottom up, by recomputing the bound-
ing volume based on all edges belonging to a specific node. For
distance computation, we use a traditional recursive algorithm. We
first compute the distance from the point to both subvolumes in
HBV, and then go into the nearest one. Once we have the upper
estimate for the nearest distance, we prune all subvolumes with
greater distance. Since not all current GPUs support recursion,
we’ve rewritten the algorithm, first as a stack-based traversal, and
then as a stack-less traversal by adding pointer-to-parent to each
GPU HBV node. HBV traversal is obviously less regular than all-
to-all computation, so none of the optimizations described above is
used. Each GPU thread traverses HBV for one point only.

We tested the algorithms we implemented on two GPUs. For both
approaches, all computations were done in single precision. The
first one is NVidia Tesla C2050 (nvidia) with 3 GB of GPU RAM
and 1030 GFlop/s single-precision peak performance. The second
one is ATI HD Radeon 5830 (ati) with 256 MB of GPU RAM 1792
GFlop/s single-precision peak. We performed two series of exper-
iments. Both involved computing a distance field from a uniform
2D m × m-sized grid of points to a regular polygon centered at
0.5∗m inscribed into a circle with radius 0.4∗m. In the first series
of experiments, the number of points was fixed at 102400, and the
number of vertices varied (exponentially) from 1 to 2048. In the
second series, the number of vertices was fixed at 1000, while the
number of points varied from 1 to 262144, also exponentially. In
both cases, we measured time it took to compute the distance field
for simple all-to-all, optimized all-to-all and HBV approaches. We
also computed accelerations of optimized vs. baseline and HBV
vs. all-to-all baseline approaches. We shall now discuss the results,
presented in figures 6 and 7.

In all cases, the growth of time with the number of vertices seems
to be linear. For all-to-all approach, this must be the case, while
for HBV, this means that even 2000 vertices is too few to reach
logarithmic growth. When the number of points varies but stays
below 2K to 4K, time varies little with the number of points, as
GPU is under-saturated. After that, the expected linear growth can
be observed.
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Figure 6: Average distance field computation time for varying number of vertices, left, and points rigth. Top, NVidia; bottom, AMD.

Obviously, for all-to-all approach, the computation time does not
depend on the configuration of point field and the polygon. For
HBV approach, however, time depends on the configuration of
both. For ATI GPUs, HBV is always worse that optimized all-to-all
for the uniform point grid. For NVidia, obviously, the acceleration
increases with the number of vertices, reaching about 2 times for
2K vertices. We also tested points uniformly distributed on a circle,
with the circle being close to the original polygon. Here, HBV ap-
proach can be an order of magnitude faster that optimized approach.
Overall, HBV gives better acceleration for NVidia GPUs than for
ATI, since NVidia Fermi GPUs have cache, and are therefore better
at handling random memory accesses.

We also compared optimized all-to-all computation to simple com-
putation. Starting with a reasonable number of points (> 4K) and
almost for any number of vertices (> 4) the version optimized with
annotations described above is always faster than the baseline ver-
sion, with acceleration increasing with the number of points, and
stopping at near 2× for both NVidia and ATI GPUs. Overall, the
provided optimizations allow us to utilize GPUs efficiently, reach-
ing about 54% peak for NVidia GPUs, and 31% peak for ATI GPUs.
The times above do not include time spent on copying data (though
we found it to be negligible) and on building HBV (non-negligible).
Therefore, all-to-all approach can be significantly faster if the dis-
tance field is computed for each polygon only once, since it avoids
the costly pre-processing step.

5 Conclusion

We analized the robustness problems of the existing distance field-
based shape matching algorithms, isolating what we believe is a
core issue, and proposed a new dissimilarity measure, explicitly
designed to overcome it. We also presented an efficient NUDA-
based GPU implementation of the distance field calculation, which
makes the proposed approach computationally feasible. This is an
ongoing project, with work underway to extend the approach to 3d.
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